Una mirada crítica a los modelos teóricos sobre educación STEAM integrada

Palabras clave: i-STEAM, fundamentación teórica, revisión sistemática, revisión estudio por estudio.

Resumen

La sociedad cambia rápidamente pero el sistema educativo no está siguiendo un camino paralelo, generándose una urgente necesidad de renovación educativa. En este sentido, la educación integrada de ciencias, tecnología, ingeniería, artes y matemáticas (i-STEAM) representa actualmente un enfoque educativo en plena expansión, que se postula alineado con las necesidades educativas de la sociedad; prueba de ello es el continuo incremento de publicaciones en esta línea de investigación. Sin embargo, existe una clara predominancia de estudios empíricos sobre este enfoque, mientras que su fundamentación teórica está menos desarrollada, lo que suscita un problema para definir su potencial educativo. En este estudio identificamos y revisamos los distintos modelos teóricos desarrollados para la i-STEAM publicados en revistas de alto impacto con el objetivo de realizar una reflexión crítica y de evaluar el alcance real de este enfoque. Los resultados obtenidos evidencian que, si bien existen algunos trabajos que muestran aspectos teóricos relevantes, aún hay pocos con marcos teóricos más completos, que proporcionen una fundamentación robusta y holística (teniendo en cuenta aspectos epistemológicos, psicológicos y didácticos) para la i-STEAM. A la luz de estos resultados recalcamos la necesidad de seguir trabajando en el soporte teórico de este enfoque.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Jairo Ortiz-Revilla, Universidad de Burgos (UBU), España

Departamento de Didácticas Específicas, Facultad de Educación, Universidad de Burgos (UBU)

Raquel Sanz-Camarero, Universidad de Burgos (UBU), España

Departamento de Didácticas Específicas, Facultad de Educación, Universidad de Burgos (UBU)

Ileana M. Greca, Universidad de Burgos (UBU), España

Departamento de Didácticas Específicas, Facultad de Educación, Universidad de Burgos (UBU)

Citas

Aguilera, D., Lupiáñez, J. L., Vílchez-González, J. M., y Perales-Palacios, F. J. (2021). In search of a long-awaited consensus on disciplinary integration in STEM education. Mathematics, 9(6), 597. https://doi.org/10.3390/math9060597

Aguilera, D., Martín-Páez, T., Valdivia-Rodríguez, V., Ruiz-Delgado, A., Williams-Pinto, L., Vílchez-González, J. M., y Perales-Palacios, F. J. (2018). La enseñanza de las ciencias basada en indagación. Una revisión sistemática de la producción española. Revista de Educación, 381, 259-284. http://doi.org/10.4438/1988-592X-RE-2017-381-388

Aguilera, D., y Ortiz-Revilla, J. (2021). STEM vs. STEAM education and student creativity: a systematic literature review. Education Sciences, 11(7), Artículo 331. https://doi.org/10.3390/educsci11070331

Ata Aktürk, A., y Demircan, H. O. (2017). A review of studies on STEM and STEAM education in early childhood. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi (KEFAD), 18(2), 757-776. https://bit.ly/3hUYz4D

Bequette, J. W., y Bequette, M. B. (2012). A place for art and design education in the STEM conversation. Art Education, 65(2), 40-47. https://doi.org/10.1080/00043125.2012.11519167

Breiner, J. M., Harkness, S. S., Johnson, C. C., y Koehler, C. M. (2012). What is STEM? A discussion about conceptions of STEM in education and partnerships. School Science and Mathematics, 112(1), 3-11. https://doi.org/10.1111/j.1949-8594.2011.00109.x

Bybee, R. W. (2010). Advancing STEM education: a 2020 vision. Technology and Engineering Teacher, 70(1), 30-35. https://bit.ly/2W4Fsh2

Bybee, R. W. (2013). The case for STEM education: challenges and opportunities. NSTA.

*Chu, H-E., Martin, S. N., y Park, J. (2019). A theoretical framework for developing an intercultural STEAM program for Australian and Korean students to enhance science teaching and learning. International Journal of Science and Mathematics Education, 17(7), 1251-1266. https://doi.org/10.1007/s10763-018-9922-y

Connor, A. M., Karmokar, S., y Whittington, C. (2015). From STEM to STEAM: strategies for enhancing engineering & technology education. International Journal of Engineering Pedagogies, 5(2), 37-47. https://doi.org/10.3991/ijep.v5i2.4458

*Constantino, T. (2018). STEAM by another name: transdisciplinary practice in art and design education. Arts Education Policy Review, 119(2), 100-106. https://doi.org/10.1080/10632913.2017.1292973

Corfo y Fundación Chile. (2017). Preparando a Chile para la sociedad del conocimiento: hacia una coalición que impulse la Educación STEAM. https://bit.ly/3zufT6v

Creswell, J. W., y Guetterman, T. C. (2019). Educational research: planning, conducting, and evaluating quantitative and qualitative research (6th ed.). Pearson.

Develaki, M. (2020). Comparing crosscutting practices in STEM disciplines. Science & Education, 29(4), 949-979. https://doi.org/10.1007/s11191-020-00147-1

Drake S. M., y Reid, J. L. (2020). 21st Century competencies in light of the history of integrated curriculum. Frontiers in Education, 5, Artículo 122. https://doi.org/10.3389/feduc.2020.00122

Espinal, L. M., y Silveira, F. (2019). La generación de prácticas, proyectos o programas en educación STEM-STEAM en el marco de una diplomatura virtual para América Latina. En B. Macedo, S. Silveira, M. García Astete, D. Meziat y L. Bengochea (Eds.), Enseñanza y aprendizaje de las ciencias en debate (pp. 622-631). Universidad de Alcalá.

European Commission. (2007). Science education now: a renewed pedagogy for the future of Europe. European Communities.

Greca, I. M., Ortiz-Revilla, J., y Arriassecq, I. (2021). Diseño y evaluación de una secuencia de enseñanza-aprendizaje STEAM para Educación Primaria. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 18(1), 1802. http://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2021.v18.i1.1802

García-Carrillo, C., Greca, I. M., y Fernández-Hawrylak, M. (2021). Teacher perspectives on teaching the STEM approach to educational coding and robotics in primary education. Educational Sciences, 11(2), Artículo 64. https://doi.org/10.3390/educsci11020064

Gresnigt, R., Taconis, R., van Keulen, H., Gravemeijer, K., y Baartman, L. (2014). Promoting science and technology in primary education: a review of integrated curricula. Studies in Science Education, 50(1), 47-84. https://doi.org/10.1080/03057267.2013.877694

Herro, D., y Quigley, C. (2017). Exploring teachers’ perceptions of STEAM teaching through professional development: implications for teacher educators. Professional Development in Education, 43(3), 416-438. https://doi.org/10.1080/19415257.2016.1205507

Kang, N-H. (2019). A review of the effect of integrated STEM or STEAM (science, technology, engineering, arts, and mathematics) education in South Korea. Asia-Pacific Science Education, 5(6), 1-22. https://doi.org/10.1186/s41029-019-0034-y

Kelley, T. R., y Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3(11), 1-11. https://doi.org/10.1186/s40594-016-0046-z

*Kim, P. W. (2016). The wheel model of STEAM education based on traditional Korean scientific contents. Eurasia Journal of Mathematics, Science & Technology Education, 12(9), 2353-2371. https://doi.org/10.12973/eurasia.2016.1263a

*Kim, H., y Chae, D-H. (2016). The development and application of a STEAM programbased on traditional Korean culture. Eurasia Journal of Mathematics, Science & Technology Education, 12(7), 1925-1936. https://doi.org/10.12973/eurasia.2016.1539a

Korea Foundation for the Advancement of Science and Creativity. (2012). Policy directions of STEAM education: introductory training of KOFAC STEAM. Foundation for the Advancement of Science and Creativity.

*Kummanee, J., Nilsook, P., y Wannapiroon, P. (2020). Digital learning ecosystem involving steam gamification for a vocational innovator. International Journal of Information and Education Technology, 10(7), 533-539. https://doi.org/10.18178/ijiet.2020.10.7.1420

Kwan, R., y Wong, B. T-M. (2021). Latest advances in STEAM education research and practice: a review of the literature. International Journal of Innovation and Learning, 29(3), 323-339. https://doi.org/10.1504/IJIL.2021.114528

*Lin, C-L., y Tsai, C-Y. (2021). The effect of a pedagogical STEAM model on students’ project competence and learning motivation. Journal of Science Education and Technology, 30(1), 112-124. https://doi.org/10.1007/s10956-020-09885-x

Little, T. (2012). 21st Century learning and progressive education: an intersection. International Journal of Progressive Education, 8(3), 1-9. https://bit.ly/39mAKOA

Martín-Páez, T., Aguilera, D., Perales-Palacios, F. J., y Vílchez-González, J. M. (2019). What are we talking about when we talk about STEM education? A review of literature. Science Education, 103(4), 799-822. https://doi.org/10.1002/sce.21522

McComas, W. F., y Burgin, S. R. (2020). A critique of “STEM” education. Science & Education, 29(4), 805-829. https://doi.org/10.1007/s11191-020-00138-2

Millar, V. (2020). Trends, issues and possibilities for an interdisciplinary STEM curriculum. Science & Education, 29(4), 929-948. https://doi.org/10.1007/s11191-020-00144-4

Moher, D., Liberati, A., Tetzlaff, J., y Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA Statement. PLoS Med, 6(7), 1-6. https://doi.org/10.1371/journal.pmed.1000097

National Research Council. (2014). STEM Integration in K-12 education. Status, prospects, and an agenda for research. The National Academies Press.

Ortiz-Revilla, J. (2020). El desarrollo competencial en la Educación Primaria: efectos de una propuesta STEAM integrada [Tesis doctoral, Universidad de Burgos]. Repositorio Institucional de la Universidad de Burgos. https://bit.ly/39mMWii

Ortiz-Revilla, J., Adúriz-Bravo, A., y Greca, I. M. (2020). A framework for epistemological discussion around an integrated STEM education. Science & Education, 29(4), 857-880. https://doi.org/10.1007/s11191-020-00131-9

Ortiz-Revilla, J., Greca, I. M., y Adúriz-Bravo, A. (2018). La Educación STEAM y el desarrollo competencial en la Educación Primaria. En I. M. Greca y J. Á. Meneses Villagrá (Eds.), Proyectos STEAM para la Educación Primaria. Fundamentos y aplicaciones prácticas (pp. 41-54). Dextra.

Ortiz-Revilla, J., Greca, I. M., y Arriassecq, I. (2021). A theoretical framework for integrated STEM education. Science & Educacion. Publicación anticipada en línea. https://doi.org/10.1007/s11191-021-00242-x

Ortiz-Revilla, J., Greca, I. M., y Meneses-Villagrá, J. Á. (2021). Efectos de una propuesta STEAM integrada en el desarrollo competencial del alumnado de Educación Primaria. Infancia y Aprendizaje. Publicación anticipada en línea. https://doi.org/10.1080/02103702.2021.1925473

Osborne, J., y Dillon, J. (2008). Science education in Europe: critical reflections. The Nuffield Foundation.

Quigley, C. F., y Herro, D. (2016). “Finding the joy in the unknown”: implementation of STEAM teaching practices in middle school science and math classrooms. Journal of Science Education and Technology, 25(3), 410-426. https://doi.org/10.1007/s10956-016-9602-z

*Quigley, C., Herro, D., y Jamil, F. M. (2017). Developing a conceptual model of STEAM teaching practices. School Science and Mathematics, 117(1-2), 1-12. https://doi.org/10.1111/ssm.12201

Reynante, B. M., Selbach-Allen, M. E., y Pimentel, D. R. (2020). Exploring the promises and perils of integrated STEM through disciplinary practices and epistemologies. Science & Education, 29(4), 785-803. https://doi.org/10.1007/s11191-020-00121-x

Ritz, J. M., y Fan, S-C. (2015). STEM and technology education: international state of the art. International Journal of Technology and Design Education, 25(4), 429-451. https://doi.org/10.1007/s10798-014-9290-z

Romero-Ariza, M. (2017). El aprendizaje por indagación: ¿existen suficientes evidencias sobres sus beneficios en la enseñanza de las ciencias? Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 27(2), 286-299. https://bit.ly/3Cy1yIm

Sanders, M. (2008). STEM, STEM education, STEMmania. The Technology Teacher, 68(4), 20-26. https://bit.ly/39qlQqE

Teixeira, E. S., Greca, I. M., y Freire, O. (2012). The History and Philosophy of Science in physics teaching: a research synthesis of didactic interventions. Science&Education, 21(6), 771-796. http://doi.org/10.1007/s11191-009-9217-3

*Trott, C. D., Even, T. L., y Frame, S. M. (2020). Merging the arts and sciences for collaborative sustainability action: a methodological framework. Sustainability Science, 15(4), 1067-1085. https://doi.org/10.1007/s11625-020-00798-7

*Wannapiroon, N., y Petsangsri, S. (2020). Effects of STEAMification model in flipped classroom learning environment on creative thinking and creative innovation. TEM Journal, 9(4), 1647-1655. https://doi.org/10.18421/TEM94-42

Yakman, G. (2008). ST∑@M education: an overview of creating a model of integrative education [Paper presentation]. ITEA 2008 Annual Conference, Salt Lake City, UT, Estados Unidos.

Zeidler, D. L. (2016). STEM education: a deficit framework for the twenty first century? A sociocultural socioscientific response. Cultural Studies of Science Education, 11(1), 11-26. https://doi.org/10.1007/s11422-014-9578-z

Zeidler, D. L., Sadler, T. D., Simmons, M. L., y Howes, E. V. (2005). Beyond STS: a research based framework for socio-scientific issues education. Science Education, 89(3), 357-377. https://doi.org/10.1002/sce.20048

Cómo citar

Ortiz-Revilla, J., Sanz-Camarero, R., & Greca, I. M. (2021). Una mirada crítica a los modelos teóricos sobre educación STEAM integrada . Revista Iberoamericana De Educación, 87(2), 13-33. https://doi.org/10.35362/rie8724634
Publicado
2021-11-15
Sección
Educación Científica. Nuevas metodologías para una sociedad cambiante
Bookmark and Share