A critical look at the theoretical models on integrated STEAM education
DOI:
https://doi.org/10.35362/rie8724634Keywords:
i-STEAM, theoretical foundation, systematic review, study by study reviewAbstract
Society is changing rapidly and the educational system is not following a parallel path, generating an urgent need for educational renewal. In this sense, integrated science, technology, engineering, arts and mathematics education (i-STEAM) currently represents an educational approach in full expansion which is postulated to be aligned with the educational needs of society; proof of this is the continuous increase of publications in this line of research. However, there is a clear predominance of empirical studies on this approach, while its theoretical foundation is less developed, which raises a problem in defining its educational potential. In this study we identify and review the different theoretical models developed for i-STEAM published in high impact journals with the aim of making a critical reflection and assessing the real scope of this approach. The results obtained show that, although there are some papers that show relevant theoretical aspects, there are still few works with more complete theoretical frameworks that could provide a robust and holistic foundation (considering epistemological, psychological and didactical aspects) for i-STEAM education. In light of these results, we emphasize the need to continue working on the theoretical support of this approach, which would allow teachers to implement it effectively.
Downloads
References
Aguilera, D., Lupiáñez, J. L., Vílchez-González, J. M., y Perales-Palacios, F. J. (2021). In search of a long-awaited consensus on disciplinary integration in STEM education. Mathematics, 9(6), 597. https://doi.org/10.3390/math9060597
Aguilera, D., Martín-Páez, T., Valdivia-Rodríguez, V., Ruiz-Delgado, A., Williams-Pinto, L., Vílchez-González, J. M., y Perales-Palacios, F. J. (2018). La enseñanza de las ciencias basada en indagación. Una revisión sistemática de la producción española. Revista de Educación, 381, 259-284. http://doi.org/10.4438/1988-592X-RE-2017-381-388
Aguilera, D., y Ortiz-Revilla, J. (2021). STEM vs. STEAM education and student creativity: a systematic literature review. Education Sciences, 11(7), Artículo 331. https://doi.org/10.3390/educsci11070331
Ata Aktürk, A., y Demircan, H. O. (2017). A review of studies on STEM and STEAM education in early childhood. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi (KEFAD), 18(2), 757-776. https://bit.ly/3hUYz4D
Bequette, J. W., y Bequette, M. B. (2012). A place for art and design education in the STEM conversation. Art Education, 65(2), 40-47. https://doi.org/10.1080/00043125.2012.11519167
Breiner, J. M., Harkness, S. S., Johnson, C. C., y Koehler, C. M. (2012). What is STEM? A discussion about conceptions of STEM in education and partnerships. School Science and Mathematics, 112(1), 3-11. https://doi.org/10.1111/j.1949-8594.2011.00109.x
Bybee, R. W. (2010). Advancing STEM education: a 2020 vision. Technology and Engineering Teacher, 70(1), 30-35. https://bit.ly/2W4Fsh2
Bybee, R. W. (2013). The case for STEM education: challenges and opportunities. NSTA.
*Chu, H-E., Martin, S. N., y Park, J. (2019). A theoretical framework for developing an intercultural STEAM program for Australian and Korean students to enhance science teaching and learning. International Journal of Science and Mathematics Education, 17(7), 1251-1266. https://doi.org/10.1007/s10763-018-9922-y
Connor, A. M., Karmokar, S., y Whittington, C. (2015). From STEM to STEAM: strategies for enhancing engineering & technology education. International Journal of Engineering Pedagogies, 5(2), 37-47. https://doi.org/10.3991/ijep.v5i2.4458
*Constantino, T. (2018). STEAM by another name: transdisciplinary practice in art and design education. Arts Education Policy Review, 119(2), 100-106. https://doi.org/10.1080/10632913.2017.1292973
Corfo y Fundación Chile. (2017). Preparando a Chile para la sociedad del conocimiento: hacia una coalición que impulse la Educación STEAM. https://bit.ly/3zufT6v
Creswell, J. W., y Guetterman, T. C. (2019). Educational research: planning, conducting, and evaluating quantitative and qualitative research (6th ed.). Pearson.
Develaki, M. (2020). Comparing crosscutting practices in STEM disciplines. Science & Education, 29(4), 949-979. https://doi.org/10.1007/s11191-020-00147-1
Drake S. M., y Reid, J. L. (2020). 21st Century competencies in light of the history of integrated curriculum. Frontiers in Education, 5, Artículo 122. https://doi.org/10.3389/feduc.2020.00122
Espinal, L. M., y Silveira, F. (2019). La generación de prácticas, proyectos o programas en educación STEM-STEAM en el marco de una diplomatura virtual para América Latina. En B. Macedo, S. Silveira, M. García Astete, D. Meziat y L. Bengochea (Eds.), Enseñanza y aprendizaje de las ciencias en debate (pp. 622-631). Universidad de Alcalá.
European Commission. (2007). Science education now: a renewed pedagogy for the future of Europe. European Communities.
Greca, I. M., Ortiz-Revilla, J., y Arriassecq, I. (2021). Diseño y evaluación de una secuencia de enseñanza-aprendizaje STEAM para Educación Primaria. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 18(1), 1802. http://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2021.v18.i1.1802
García-Carrillo, C., Greca, I. M., y Fernández-Hawrylak, M. (2021). Teacher perspectives on teaching the STEM approach to educational coding and robotics in primary education. Educational Sciences, 11(2), Artículo 64. https://doi.org/10.3390/educsci11020064
Gresnigt, R., Taconis, R., van Keulen, H., Gravemeijer, K., y Baartman, L. (2014). Promoting science and technology in primary education: a review of integrated curricula. Studies in Science Education, 50(1), 47-84. https://doi.org/10.1080/03057267.2013.877694
Herro, D., y Quigley, C. (2017). Exploring teachers’ perceptions of STEAM teaching through professional development: implications for teacher educators. Professional Development in Education, 43(3), 416-438. https://doi.org/10.1080/19415257.2016.1205507
Kang, N-H. (2019). A review of the effect of integrated STEM or STEAM (science, technology, engineering, arts, and mathematics) education in South Korea. Asia-Pacific Science Education, 5(6), 1-22. https://doi.org/10.1186/s41029-019-0034-y
Kelley, T. R., y Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3(11), 1-11. https://doi.org/10.1186/s40594-016-0046-z
*Kim, P. W. (2016). The wheel model of STEAM education based on traditional Korean scientific contents. Eurasia Journal of Mathematics, Science & Technology Education, 12(9), 2353-2371. https://doi.org/10.12973/eurasia.2016.1263a
*Kim, H., y Chae, D-H. (2016). The development and application of a STEAM programbased on traditional Korean culture. Eurasia Journal of Mathematics, Science & Technology Education, 12(7), 1925-1936. https://doi.org/10.12973/eurasia.2016.1539a
Korea Foundation for the Advancement of Science and Creativity. (2012). Policy directions of STEAM education: introductory training of KOFAC STEAM. Foundation for the Advancement of Science and Creativity.
*Kummanee, J., Nilsook, P., y Wannapiroon, P. (2020). Digital learning ecosystem involving steam gamification for a vocational innovator. International Journal of Information and Education Technology, 10(7), 533-539. https://doi.org/10.18178/ijiet.2020.10.7.1420
Kwan, R., y Wong, B. T-M. (2021). Latest advances in STEAM education research and practice: a review of the literature. International Journal of Innovation and Learning, 29(3), 323-339. https://doi.org/10.1504/IJIL.2021.114528
*Lin, C-L., y Tsai, C-Y. (2021). The effect of a pedagogical STEAM model on students’ project competence and learning motivation. Journal of Science Education and Technology, 30(1), 112-124. https://doi.org/10.1007/s10956-020-09885-x
Little, T. (2012). 21st Century learning and progressive education: an intersection. International Journal of Progressive Education, 8(3), 1-9. https://bit.ly/39mAKOA
Martín-Páez, T., Aguilera, D., Perales-Palacios, F. J., y Vílchez-González, J. M. (2019). What are we talking about when we talk about STEM education? A review of literature. Science Education, 103(4), 799-822. https://doi.org/10.1002/sce.21522
McComas, W. F., y Burgin, S. R. (2020). A critique of “STEM” education. Science & Education, 29(4), 805-829. https://doi.org/10.1007/s11191-020-00138-2
Millar, V. (2020). Trends, issues and possibilities for an interdisciplinary STEM curriculum. Science & Education, 29(4), 929-948. https://doi.org/10.1007/s11191-020-00144-4
Moher, D., Liberati, A., Tetzlaff, J., y Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA Statement. PLoS Med, 6(7), 1-6. https://doi.org/10.1371/journal.pmed.1000097
National Research Council. (2014). STEM Integration in K-12 education. Status, prospects, and an agenda for research. The National Academies Press.
Ortiz-Revilla, J. (2020). El desarrollo competencial en la Educación Primaria: efectos de una propuesta STEAM integrada [Tesis doctoral, Universidad de Burgos]. Repositorio Institucional de la Universidad de Burgos. https://bit.ly/39mMWii
Ortiz-Revilla, J., Adúriz-Bravo, A., y Greca, I. M. (2020). A framework for epistemological discussion around an integrated STEM education. Science & Education, 29(4), 857-880. https://doi.org/10.1007/s11191-020-00131-9
Ortiz-Revilla, J., Greca, I. M., y Adúriz-Bravo, A. (2018). La Educación STEAM y el desarrollo competencial en la Educación Primaria. En I. M. Greca y J. Á. Meneses Villagrá (Eds.), Proyectos STEAM para la Educación Primaria. Fundamentos y aplicaciones prácticas (pp. 41-54). Dextra.
Ortiz-Revilla, J., Greca, I. M., y Arriassecq, I. (2021). A theoretical framework for integrated STEM education. Science & Educacion. Publicación anticipada en línea. https://doi.org/10.1007/s11191-021-00242-x
Ortiz-Revilla, J., Greca, I. M., y Meneses-Villagrá, J. Á. (2021). Efectos de una propuesta STEAM integrada en el desarrollo competencial del alumnado de Educación Primaria. Infancia y Aprendizaje. Publicación anticipada en línea. https://doi.org/10.1080/02103702.2021.1925473
Osborne, J., y Dillon, J. (2008). Science education in Europe: critical reflections. The Nuffield Foundation.
Quigley, C. F., y Herro, D. (2016). “Finding the joy in the unknown”: implementation of STEAM teaching practices in middle school science and math classrooms. Journal of Science Education and Technology, 25(3), 410-426. https://doi.org/10.1007/s10956-016-9602-z
*Quigley, C., Herro, D., y Jamil, F. M. (2017). Developing a conceptual model of STEAM teaching practices. School Science and Mathematics, 117(1-2), 1-12. https://doi.org/10.1111/ssm.12201
Reynante, B. M., Selbach-Allen, M. E., y Pimentel, D. R. (2020). Exploring the promises and perils of integrated STEM through disciplinary practices and epistemologies. Science & Education, 29(4), 785-803. https://doi.org/10.1007/s11191-020-00121-x
Ritz, J. M., y Fan, S-C. (2015). STEM and technology education: international state of the art. International Journal of Technology and Design Education, 25(4), 429-451. https://doi.org/10.1007/s10798-014-9290-z
Romero-Ariza, M. (2017). El aprendizaje por indagación: ¿existen suficientes evidencias sobres sus beneficios en la enseñanza de las ciencias? Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 27(2), 286-299. https://bit.ly/3Cy1yIm
Sanders, M. (2008). STEM, STEM education, STEMmania. The Technology Teacher, 68(4), 20-26. https://bit.ly/39qlQqE
Teixeira, E. S., Greca, I. M., y Freire, O. (2012). The History and Philosophy of Science in physics teaching: a research synthesis of didactic interventions. Science&Education, 21(6), 771-796. http://doi.org/10.1007/s11191-009-9217-3
*Trott, C. D., Even, T. L., y Frame, S. M. (2020). Merging the arts and sciences for collaborative sustainability action: a methodological framework. Sustainability Science, 15(4), 1067-1085. https://doi.org/10.1007/s11625-020-00798-7
*Wannapiroon, N., y Petsangsri, S. (2020). Effects of STEAMification model in flipped classroom learning environment on creative thinking and creative innovation. TEM Journal, 9(4), 1647-1655. https://doi.org/10.18421/TEM94-42
Yakman, G. (2008). ST∑@M education: an overview of creating a model of integrative education [Paper presentation]. ITEA 2008 Annual Conference, Salt Lake City, UT, Estados Unidos.
Zeidler, D. L. (2016). STEM education: a deficit framework for the twenty first century? A sociocultural socioscientific response. Cultural Studies of Science Education, 11(1), 11-26. https://doi.org/10.1007/s11422-014-9578-z
Zeidler, D. L., Sadler, T. D., Simmons, M. L., y Howes, E. V. (2005). Beyond STS: a research based framework for socio-scientific issues education. Science Education, 89(3), 357-377. https://doi.org/10.1002/sce.20048
How to Cite
Published
Issue
Section
License
Any authors who publish with this journal accept the following terms: