Ação dos tutores e sua relação com o desempenho dos estudantes em curso de Licenciatura em Química sob a perspectiva da analítica da aprendizagem
DOI:
https://doi.org/10.35362/rie8013469Palavras-chave:
educação a distância, formação de professores, analítica da aprendizagem, tutoriaResumo
Este artigo busca responder os seguintes objetivos: elaborar um modelo estatístico das ações dos tutores no AVA que interferem no desempenho dos estudantes do curso de Licenciatura em Química, na modalidade de educação a distância, da Universidade Aberta do Brasil / Universidade Estadual do Ceará (UAB/UECE), com fundamento na analítica da aprendizagem; e conhecer as ações que interferem no desempenho dos estudantes sob a perspectiva de tutores e estudantes, comparando o resultado com o modelo estatístico obtido na pesquisa. Para tanto, a metodologia está assentada no paradigma pragmático e na abordagem mista. Adotou o método estatístico, com uso da técnica de análise de regressão logística binária, suplementado pelo emprego de questionários com itens abertos e fechados, aplicados a tutores e estudantes. Ao final, foi obtido um modelo preditivo contendo 11 ações desenvolvidas pelos tutores, sendo sete que aumentam a probabilidade de aprovação dos estudantes e quatro que devem ser evitadas pelos tutores ou cuja frequência deve ser diminuída, pois reduzem a probabilidade de aprovação.
Downloads
Referências
Andergassen, M., Mödritscher, F., & Neumann, G. (2014). Practice and repetition during exam preparation in blended learning courses: Correlations with learning results. Journal of Learning Analytics, 1(1), 48-74. https://dx.doi.org/10.18608/jla.2014.11.4
Barbosa, G. M. O. S. (2019). Ação dos tutores e sua relação com o desempenho dos estudantes em curso de licenciatura da UAB/UECE sob a perspectiva da analítica da aprendizagem (Tese de Doutorado não publicada). Universidade Estadual do Ceará, Fortaleza, Brasil.
Brasil. Ministério da Saúde. Conselho Nacional de Saúde. (2016). Resolução nº 510, de 7 de abril de 2016. Disponível em https://bit.ly/2E0qAEo
Brasil. Ministério da Educação. Coordenação de Aperfeiçoamento de Pessoal de Nível Superior. (2018a, Março 27). O que é a UAB? [página web]. Disponível em https://bit.ly/2Y53B2i
Brasil. Ministério da Educação. Coordenação de Aperfeiçoamento de Pessoal de Nível Superior. (2018b). Nota Técnica nº 2/2018/CGPC/DED
Cambruzzi, W. L. (2014). GVWISE: uma aplicação de learning analytics para a redução da evasão na educação a distância (Dissertação de Mestrado, Universidade do Vale do Rio dos Sinos, São Leopoldo, Brasil). Disponível em https://bit.ly/2V5PPuf
Chatti, M. A., Dyckhoff, A. L., Schroeder, U., & Thüs, H. (2012). A reference model for learning analytics. International Journal of Technology Enhanced Learning, 4(5-6), 318-331. https://dx.doi.org/10.1504/IJTEL.2012.051815
Chaves, J. B. (2015). Formação a distância de professores em Matemática pela UAB/UECE: Relação entre interação e desempenho à luz da analítica da aprendizagem (Dissertação de Mestrado, Universidade Estadual do Ceará, Fortaleza, Brasil). Disponível em https://bit.ly/2LBKonE
Creswell, J. W., & Clark, V. L. P. (2013). Pesquisa de métodos mistos (2 ed.). Porto Alegre: Penso.
Duarte, L. F. D. (2017). Cronologia da luta pela regulação específica para as Ciências Humanas e Sociais da avaliação da ética em pesquisa no Brasil. Práxis Educativa, 12(1), 267-286. https://dx.doi.org/10.5212/PraxEduc.v.12i1.0015
Dvorak, T., & Jia, M. (2016). Online work habits and academic performance. Journal of Learning Analytics, 3(3), 318-330. https://dx.doi.org/10.18608/jla.2016.33.15
Fávero, L. P. (2015). Análise de dados: Modelos de regressão com Excel, Stata e SPSS. Rio de Janeiro: Elsevier.
Ferreira, J. L. C. (2016). MD-PREAD: Um modelo para predição de reprovação de aprendizes na educação a distância usando árvore de decisão (Dissertação de Mestrado, Universidade do Vale do Rio dos Sinos, São Leopoldo, Brasil). Disponível em https://bit.ly/2JlF19i
Gonçalves, M. T. L. (2018). Formação do pedagogo para a gestão escolar na UAB/UECE: A analítica da aprendizagem na educação a distância (Tese de Doutorado, Universidade Estadual do Ceará, Fortaleza, Brasil). Disponível em https://bit.ly/2JnE3co
Gray, G., McGuinness, C., Owende, P., & Hofmann, M. (2016). Learning factor models of students at risk of failing in the early stage of tertiary education. Journal of Learning Analytics, 3(2), 330-372. https://dx.doi.org/10.18608/jla.2016.32.20
Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. (2016). Sinopse estatística de educação superior 2015. Brasília: Autor. Disponível em https://bit.ly/2WpnG2Y
Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. (2018a). Sinopse estatística de educação superior 2017. Brasília: Autor. Disponível em https://bit.ly/2CAsUQN
Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. (2018b). Censo da educação superior. Notas estatísticas 2017. Brasília: Autor. Disponível em https://bit.ly/2Ri1fK5
Jayaprakash, S. M., Moody, E. W., Lauría, E. J. M., Regan, J. R., & Baron, J. D. (2014). Early alert of academically at‐risk students: an open source analytics initiative. Journal of Learning Analytics, 1(1), 6-47. https://dx.doi.org/10.18608/jla.2014.11.3
Johnson, L., Adams, S., & Cummins, M. (2012). The NMC horizon report: 2012 Higher education edition. Austin, Texas: The New Media Consortium. Disponível em https://bit.ly/2VTklfg
Knight, D. B., Brozina, C., & Novoselich, B. (2016). An investigation of first-year engineering student and instructor perspectives of learning analytics approaches. Journal of Learning Analytics, 3(3), 215-238. https://dx.doi.org/10.18608/jla.2016.33.11
Lakatos, E. M., & Marconi, M. A. (1991). Metodologia científica (2. ed.). São Paulo: Atlas.
Leeuwen, A. (2015). Learning analytics to support teachers during synchronous CSCL: Balancing between overview and overload. Journal of Learning Analytics, 2(2), 138-162. https://dx.doi.org/10.18608/jla.2015.22.11
Lowes, S., Lin, P., & Kinghorn, B. (2015). Exploring the link between online behaviours and course performance in asynchronous online high school courses. Journal of Learning Analytics, 2(2), 169-194. https://dx.doi.org/10.18608/jla.2015.22.13
McCoy, C., & Shih, P. (2016). Teachers as producers of data analytics: A case study of a teacher-focused educational data science program. Journal of Learning Analytics, 3(3), 193-214. https://dx.doi.org/10.18608/jla.2016.33.10
Mill, D. R. S., Ribeiro, L. R. C., & Oliveira, M. R. G. (2014). Múltiplos enfoques sobre a polidocência na educação a distância virtual. In D. R. S. Mill, L. R. C. Ribeiro & M. R. G. Oliveira (Org.), Polidocência na educação a distância: Múltiplos enfoques (pp. 13-24). São Carlos: Ed. UFSCar.
Nunes, J. B. C. (2015). Estado da arte sobre analítica da aprendizagem na América Latina. In J. B. Castro & T. E. V. Silva (Coords.), Anais dos workshops do Congresso Brasileiro de Informática na Educação (pp. 1024-1033). https://dx.doi.org/10.5753/cbie.wcbie.2015.1024
Oliveira, E. D. S. (2016). Modelo de diagnóstico de dificuldades de aprendizagem orientado a conceitos (Dissertação de Mestrado, Universidade Federal da Paraíba, João Pessoa, Brasil). Disponível em https://bit.ly/2VnUOvl
Oliveira, M. R. G., Mill, D. R. S., & Ribeiro, L. R. C. (2014). A gestão da sala de aula virtual e os novos saberes para a docência na modalidade de Educação a Distância. In D. R. S. Mill, L. R. C. Ribeiro & M. R. G. Oliveira (Org.), Polidocência na educação a distância: Múltiplos enfoques (pp. 61-76). São Carlos: Ed. UFSCar.
Pardos, Z. A., Baker, R. S. J. D., San Pedro, M. O. C. Z., Gowda, S. M., & Gowda, S. M. (2014). Affective states and state tests: Investigating how affect and engagement during the school year predict end-of-year learning outcomes. Journal of Learning Analytics, 1 (1), 107-128. https://dx.doi.org/10.18608/jla.2014.11.6
Portal, C. (2016). Estratégias para minimizar a evasão e potencializar a permanência em EaD a partir de sistema que utiliza mineração de dados educacionais e learning analytics. (Dissertação de Mestrado, Universidade do Vale do Rio dos Sinos, São Leopoldo, Brasil). Disponível em https://bit.ly/2H7heIA
Sales, V. M. B. (2017). Analítica da aprendizagem como estratégia de previsão de desempenho de estudantes de curso de Licenciatura em Pedagogia a distância (Tese de Doutorado, Universidade Estadual do Ceará, Fortaleza, Brasil). Disponível em https://bit.ly/2H7eSJP
Santos, H. L., Cechinel, C., Nunes, J. B. C., & Ochoa, X. (2017). An initial review of learning analytics in Latin America. In: A. Díaz, A. Casali, M. C. Rivas, & A. S. Sprock (Eds.), 2017 Twelfth Latin American Conference on Learning Technologies (LACLO), (pp. 1-9). https://dx.doi.org/10.1109/LACLO.2017.8120913
Schneider, B., & Pea, R. (2015). Does seeing one another’s gaze affect group dialogue? A computational approach. Journal of Learning Analytics, 2(2), 107-133. https://dx.doi.org/10.18608/jla.2015.22.9
Souza, R. C. (2016). Aplicação de learning analytics para avaliação do desempenho de tutores a distância (Dissertação de Mestrado, Universidade Federal Rural do Semi-Árido, Mossoró, Brasil). Disponível em https://bit.ly/2Ycz3f6
Vidal, E. M. (2017). Universidade Aberta do Brasil na Universidade Estadual do Ceará: Acesso, permanência e sucesso. Estudo de dados a partir do SisUab e SisRel. Fortaleza: UECE.
Waddington, R. J., Nam, S., Lonn, S., & Teasley, S. D. (2016). Improving early warning systems with categorized course resource usage. Journal of Learning Analytics, 3(3), 263-290. https://dx.doi.org/10.18608/jla.2016.33.13
Zapparolli, L. S. (2016). FAG: Ferramenta de apoio à gestão no ambiente virtual de aprendizagem Moodle utilizando técnicas de Business Intelligence (Dissertação de Mestrado, Universidade Fe-deral do ABC, Santo André, Brasil). Disponível em https://bit.ly/2VlTn0k
Como Citar
Downloads
Publicado
Edição
Seção
Licença
Os(as) autores(as) que publiquem nesta revista concordam com os seguintes termos: