Contributions for the qualification of Physic’s teachers in pre-service. Impacts about the use of metacognitive strategies on problem solving
DOI:
https://doi.org/10.35362/rie7713076Keywords:
Physics teaching, future teachers, metacognition, pedagogical knowledgeAbstract
The current text is based on the necessity for the teachers to experience a more meaningful learning during their formation, for them to innovate and offer that to their students. This way, the present study describes and analyses how a group of future teachers of Physics sense the use of metacognition as a strategy of learning and teaching. The study was held in the form of a university extension course with the goal of approaching the metacognition theme and how it can be used in the problem solving in Physics. For that, ten students were selected, and for 20 hours of class and some more extra hours, they studied and discussed the way of operationalization as a didact strategy. The results that were found point out the fact that the approached subject was very significant, the students showed themselves motivated to learn, the using of the strategy was judged very relevant, as much in the process of learning in the subjects of the university degree, as in the future performance as teachers, and to finish, they value the innovating ideas as a way of searching for new alternatives to qualify the teaching and learning process in basic education.
Downloads
References
Bogdan, R. C.e Biklen, S. K. (1994). Investigação qualitativa em educação: uma introdução à teoria e aos métodos. Porto: Porto Editora.
Brown, A. L. (1978). Knowing when, where, and how to remember: a problem of metacognition. In R. Glaser (Org.), Advances in instructional psychology (pp. 77-165). Hillsdale, New Jersey: Lawrence Erlbaum Associates.
Coleoni, E e Buteler, L. (2009). Students thinking during physics problem solving: identifying the resources with which they learn. Journal of Science Education, 10(1), 10-14.
Chi, M. T., Glaser, R. e Rees, E. (1982). Expertise in problem solving. In R. J. Sternberg (Org.). Advances in the psychology of human intelligence. v. 1 (pp. 7-75). Hilsdale, N.J.: Erlbaum.
Decreto nº 7.219, de 24 de junho de 2010. Dispõe sobre o Programa Institucional de Bolsa de Iniciação à Docência – Pibid e dá outras providências. Diário Oficial da União, n. 120, seção 1, 4-5.
Duarte, R. (2004). Entrevistas em pesquisas qualitativas. Educar em Revista, 24, 213-225.
Flavell, J. H. (1976). Metacognitive aspects of problem solving. In L. B. Resnick (Ed.). The nature of intelligence (pp. 231-236). Hillsdale, NJ: LEA.
Efklides, A. (2006). Metacognition and affect: What can metacognitive experiences tell us about the learning process? Educational Research Review, 1(1), 3-14.
Flavell, J. H. e Wellman, H. M. (1977). Metamemory. In R. V. Kail e J. W. Hagen (Eds.), Perspectives on the development of memory and cognition (pp. 3-33). Hillsdale, New Jersey: Lawrence Erlbaum Associates.
Gatti, B. (2014). A formação inicial de professores para a educação básica: as licenciaturas. Revista USP, São Paulo, 100, 33-46.
Georghiades, P. (2004). From the general to the situated: Three decades of metacognition. Research report. International Journal of Science Education, 26(3), 365–383.
Ghiggi, C. (2017). Estratégias metacognitivas na resolução de problemas em Física. (Dissertação de Mestrado em Ensino de Ciências e Matemática). Universidade de Passo Fundo, Passo Fundo, RS.
Hinojosa, J.y Sanmarti, N. (2016). Promoviendo la autorregulación en la resolución de problemas de Física. Ciência & Educação, 22(1), 7-22.
Kistner, S., Rakoczy, K., Otto, B., Dignath-van Ewijk, C., Buttner, G. e Klieme, E. (2010). Promotion of self-regulated learning in classrooms: investigating frequency, quality, and consequences for student performance. Metacognition and Learning, 5(2), 157-171.
Lüdke, M. e André, M. E. D. A. (1986). Pesquisa em educação: abordagens qualitativas. São Paulo: EPU.
Malone, K. L. (2008). Correlations among knowledge structures, force concept inventory, and problem-solving behaviors. Physical Review Special Topics - Physics Education Research, 4(2), 020107-1 - 15.
Mello, G. N. (2000). Formação inicial de professores para a educação básica: uma (re)visão radical. São Paulo em Perspectiva, 14(1), 98-110.
Moser, S., Zumbach, J. eDeibl, I. (2017). The effect of metacognitive training and prompting on learning success in simulation‐based physics learning. Science Education, 101(6), 944-967.
Monereo, C. (2001). La enseñanza estratégica: enseñar para la autonomía. In C. Monereo (Org.). Ser estratégico y autónomo aprendiendo (pp. 11-27). Barcelona: Graó.
Reif, F. e Larkin, Jill H. (1991). Cognition in scientific and everyday domains: comparison and learning implications. Journal of Research in Science Teaching, 28(9), 733-760.
Rosa, C. T. W. (2001). Laboratório didático de Física da Universidade de Passo Fundo: concepções teórico-metodológicas. (Dissertação de Mestrado em Educação). Universidade de Passo Fundo, Passo Fundo, RS.
Rosa, C. T. W. (2011). A metacognição e as atividades experimentais no ensino de Física. (Tese de Doutorado em Educação Científica e Tecnológica). Universidade Federal de Santa Catarina, Florianópolis, SC.
Rosa, C. T. W. e Ghiggi, C. (2017). Monitoramento e controle metacognitivo na resolução de problemas em Física: análise de um estudo comparativo. Alexandria: Revista de Educação em Ciência e Tecnologia, 10(2), 105-125.
Ryan, Q. X., Frodermann, E., Heller, K., Hsu, L. e Mason, A. (2016). Computer problem-solving coaches for introductory physics: Design and usability studies. Physical Review Physics Education Research, 12(1), 0101051-17.
Taasoobshirazi, G. e Farley, J. A. (2013). Multivariate Model of Physics Problem Solving. Learning and Individual Differences, 24, 53-62.
Thomas, G. P. (2013). Changing the metacognitive orientation of a classroom environment to stimulate metacognitive reflection regarding the nature of physics learning. International Journal of Science Education, 35(7), 1183-1207.
Ueno, M. H. (2004). A “tensão essencial” na formação de professores de Física: entre o pensamento convergente e o pensamento divergente. (Dissertação de Mestrado em Ensino de Ciências e Educação Matemática). Universidade Estadual de Londrina, Londrina, PR.
Zajchowski, R. e Martin, J. (1993). Differences in the problem solving of stronger and weaker novices in physics: Knowledge strategies, or knowledge structure. Journal of Research in Science Teaching, 30, 459–470.
Zepeda, C. D., Richey, J. E., Ronevich, P. e Nokes-Malach, T. J. (2015). Direct instruction of metacognition benefits adolescent science learning, transfer, and motivation: An in vivo study. Journal of Educational Psychology, 107(4), 954-970.
Zohar, A. e Barzilai, S. (2013). A review of research on metacognition in science education: current and future directions. Studies in Science Education, 49(2), 121–169.
How to Cite
Downloads
Published
Issue
Section
License
Any authors who publish with this journal accept the following terms: