Taxonomy of errors in learning vector spaces

Authors

  • Ana Rosso Universidad Nacional de Río Cuarto, Argentina
  • Julio Barros Universidad Nacional de Río Cuarto, Argentina

DOI:

https://doi.org/10.35362/rie632638

Keywords:

Linear Algebra, vector spaces, error classification

Abstract

As teachers of Linear Algebra concerned with some learning errors that frequently appear in our students’ productions, we decided to build a characterization of such errors based on the students’ learning of the concepts of vector spaces and subspaces. It is well-known that the teaching-learning process of Linear Algebra involves conceptual and cognitive difficulties due to the nature of concepts as well as the range of languages and representations used in the field. As discussed in the literature, reasoning and working with these languages and representations lead to different ways of addressing a concept; this in turn requires switching languages constantly. The abstract nature of concepts and the mastering of their various representations are the main reasons why learning difficulties and errors occur. It is in this context that we built a characterization of our students’ errors to find pedagogical approaches that help enhance the teaching-learning process. The taxonomy proposed in this paper consists of four categories that allow us to identify the possible causes of the students’ errors.

Downloads

Download data is not yet available.

Author Biography

Julio Barros, Universidad Nacional de Río Cuarto, Argentina

Dpto. Matemáticas, Facultad de Ciencias Exactas Físico Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina

References

BROUSSEAU, G. (1997). Theory of Didactical Situations in Mathematics. Kluwer Academic Publishers.

DORIER (2002), Teaching Linear Algebra at University, ICM 2003 vol III. pág 875 – 884

HILLEL J. (2000), Modes of Description and the Problem of Representation in Linear Algebra. in J-L. Dorier (Ed.), On the Teaching of Linear Algebra, Kluwer Academic Publishers, Dordrecht, pp 191–207.

KAPUT (1987), Algebra papers: A representational framework, en N. Bergeron, N. Herscovics y C. Kieran (eds.), Proceedings of the eleventh International Conference for the Psychology of Mathematics Education, pp. 345-354.

LÓPEZ FLORES J., CANTORAL, R. (2005). La socioepistemología. Un estudio sobre su racionalidad. Acta Latinoamericana de Matemática Educativa, Vol. 19, pp. 838-843.

MIRANDA MONTOYA E. (2004) Generación de modelos de enseñanza – aprendizaje en el álgebra lineal. Primera Fase: Transformaciones Lineales

MOLINA, J L, OKTAÇ A. (2007) Concepciones de la transformación lineal en contexto geométrico. Revista Latinoamericana de Investigación en Matemática Educativa.

RICO, L. (1995): “Errores y dificultades en el aprendizaje de las Matemáticas”, cap. 3. pp. 69-108, en KILPATRIK, J.; GÓMEZ, P. y RICO, L.: Educación Matemática. Grupo Editorial Iberoamérica, Méjico.

ROSSO, A. BARROS, J. (2010) Propuesta didáctica de articulación de los diferentes lenguajes subyacentes en la enseñanza de Espacios Vectoriales y Subespacios en Algebra Lineal. PIIMEG. UNRC.

SIERPINSKA, A. (1996). Problems related to the design of the teaching and learning process in linear algebra. Artículo presentado en la Research Conference in Collegiate Mathematics Education. USA: Central Michigan University.

How to Cite

Rosso, A., & Barros, J. (2013). Taxonomy of errors in learning vector spaces. Iberoamerican Journal of Education, 63(2), 1. https://doi.org/10.35362/rie632638

Published

2013-11-15

Issue

Section

- Science and Mathematics Didactics