Reinterpreting Dyslexia. A differentiating proposal for an inclusive neurodidactics

Authors

DOI:

https://doi.org/10.35362/rie7813226

Keywords:

dyslexia, neurological impairments, phonological awareness, reading and writing difficulties, sensory deficiency

Abstract

Until the appearance of neuroimaging techniques, research on Dyslexia has focused on the phonological deficit as the main causal factor. These techniques have made it possible to advance the anatomical-functional knowledge of the different areas of the brain, revealing the amplitude and complexity of the brain's reading network.

In order to better understand this neurodevelopmental disorder, we analyze the latest advances on the neuroanatomical functions of the different areas of the brain involved in reading and research on the neurological etiology of dyslexia. We conclude with the need to consider a sensory neurodevelopmental disorder located in primary auditory and visual areas that entails a deficient processing of visuo-spatio-temporal information. Dyslexia is considered, and therefore also the phonological deficit, as a consequence of this disorder. This differentiation makes it possible to visualize other symptoms less addressed by research and didactics.

Cognitive implications in typical classroom tasks of the spatiotemporal processing deficit in the early childhood and primary education stages are extracted from which to design an inclusive didactics, comprehensive with the neurological nature of the disorder, which does not penalize students who suffer this neurological disorder.

Downloads

Download data is not yet available.

References

Ahveninen, J.; Iiro P. Jääskeläinen, I.P. ; Raij, T; Bonmassar, G.; Devore, S. ; Hämäläinen, M; Levänen, S.; Lin, F-H.; Sams, M.; Shinn-Cunningham, B. G.; Witzel, T. y Belliveau, J. W. (2006) Task-modulated “what” and “where” pathways in human auditory cortex. PNAS, 103(39), 14608-14613 https://doi.org/10.1073/pnas.0510480103

Banai, K.; Hornickel, J.; Skoe, E.; Nicol, T.; Zecker, S. y Kraus, N. (2009). Reading and subcortical auditory function. Cerebral Cortex, 19, 2699-2707 https://doi.org/10.1093/cercor/bhp024

Banai, K.; Nicol, T.; Zecker, S.G. y Kraus, N. (2005). Brainstem timing: implications for cortical processing and literacy. Journal of Neuroscience, 25(43), 9850-9857. doi: 10.1523/JNEUROSCI.2373-05.2005

Ben-Shachar, M., Dougherty, R. F., Deutsch, G. K., y Wandell, B. A. (2007). Contrast Responsivity in MT+ Correlates with Phonological Awareness and Reading Measures in Children. NeuroImage, 37(4), 1396–1406. http://doi.org/10.1016/j.neuroimage.2007.05.060

Bueti, D.; Bahrami, B. y Walsh, V. (2008). Sensory and associative cortex in time perception. Journal of Cognitive Neuroscience, 20, 1054-1062. doi:10.1162/jocn.2008.20060

Clark, K.A.; Helland, T; Specht, K.; Narr, K.L.; Manis, F. R.; Toga, A.W. y Hugdahl, K. (2014) Neuroanatomical precursors of dyslexia identified from pre-reading through to age 11, Brain, 137(12), 3136-3141, https://doi.org/10.1093/brain/awu229

Cutini, S.; Szűcs, D; Natasha Mead, N; Huss, M y Goswami, U. (2016). Atypical right hemisphere response to slow temporal modulations in children with developmental dyslexia. NeuroImage, 143, 40-49 http://dx.doi.org/10.1016/j.neuroimage.2016.08.012

de Freitas, P.B.; Pedão, S.T. y Barela, J.A. (2014) Visuomotor processing and hand force coordination in dyslexic children during a visually guided manipulation task. Research in Developmental Disabilities. 35(10):2352-2358. doi: 10.1016/j.ridd.2014.06.002..

Díaz, B., Hintz, F., Kiebel,S.J. y von Kriegstein, K.(2012). Dysfunction of the auditory thalamus in developmental dyslexia. PNAS, 109(34), 13841-13846. doi: 10.1073/pnas.1119828109.

Elliott, J.G. y Grigorenko, E.L. (2014). The Dyslexia Debate. Nueva York: Cambridge University Press.

Etchepareborda, M.C. (2002) Detección precoz de la Dislexia y enfoque terapéutico. Revista de Neurología, 34 (Supl1), 13-23. Recuperado: https://pdfs.semanticscholar.org/2812/bb248b85f9d7afe38996c79cb5e80ea610cc.pdf

Fischer, J. y Whitney, D. (2009) Precise Discrimination of Object Position in the Human Pulvinar. Human Brain Mapping, 30, 101–111, Doi: 10.1002/hbm.20485

Franceschini S, Gori S, Ruffino M, Pedrolli K, Facoetti A. (2012) A causal link between visual spatial attention and reading acquisition. Current Biology, 22(9), 814-819. doi: 10.1016/j.cub.2012.03.013.

Friederici, A. D. (2011) The brain basis of language processing: from structure to function. Physiological Reviews, 91, 1357–1392, doi:10.1152/physrev.00006.2011

Ghosh, S.; Basu, A.; Kumaran, S. S. y Khushu, S. (2010). Functional mapping of language networks in the normal brain using a word-association task. The Indian Journal of Radiology & Imaging, 20(3), 182–187. http://doi.org/10.4103/0971-3026.69352

Giraldo-Chica, M.; Hegarty, J.P. y Schneider, KA. (2015). Morphological differences in the lateral geniculate nucleus associated with dyslexia. Neuroimage Clin. (20)7, 830-836. doi: 10.1016/j.nicl.2015.03.011

Gori, S.; Seitz, A.R.; Ronconi, L.; Franceschini, S. y Facoetti, A. (2016). Multiple Causal Links Between Magnocellular-Dorsal Pathway Deficit and Developmental Dyslexia. Cerebral Cortex, 26, 4356-4369. https://doi.org/10.1093/cercor/bhv206

Grossberg, S. (1999) The link between brain learning, attention, and consciousness. Consciousness and Cognition,8(1), 1-44. https://doi.org/10.1006/ccog.1998.0372

Hornickel, J.; Skoe, E.; Nicol, T.; Zecker, S. y Kraus, N. (2009). Subcortical differentiation of stop consonants relates to reading and speech-in-noise perception. PNAS, 106, 13022-13027. doi: 10.1073/pnas.0901123106

Kozlovskiy, S.A.; Pyasik, M.M.; Korotkova, A.V.; Vartanov, A.V.; Glozman, J.M. y Kiselnikov, A.A. (2014). Selective involvement of lingual gyrus in working memory and perception of different types of visual stimuli. Journal of the International Neuropsychological Society, 20, (S2), 43–43

Kravitz, D. J.; Kadharbatcha, S. S.; Baker, C.I. y Mishkin, M. (2011) A new neural framework for visuospatial processing. Nat Rev Neurosci 12(4):217-230. doi: 10.1038/nrn3008

Kronschnabel J.; Brem S.; Maurer U. y Brandeis D. (2014) The level of audiovisual print-speech integration deficits in dyslexia Neuropsychologia, 62, 245-61. doi: 10.1016/j.neuropsychologia.2014.07.024

Lehongre, K.; Morillon B.; Giraud, A-L. y Ramus, F (2013). Impaired auditory sampling in dyslexia: further evidence from combined fMRI and EEG Frontiers in Human Neurosciencie. https://doi.org/10.3389/fnhum.2013.00454

Livingstone, M.S.; Rosen, G.D.; Drislane, F.W. y Galaburda, A.M. (1991). Physiological and anatomical evidence for a magnocellular defect in developmental dyslexia. PNAS, 88, 7943-7947.

Lizarazu, M.; Lallier, M.; Molinaro, N.; Bourguignon, M.; Paz-Alonso, P.M.; Lerma-Usabiaga, G y Carreiras, M. (2015). Developmental evaluation of atypical auditory sampling in dyslexia: Functional and structural evidence. Human Brain Mapp. 36(12), 4986-5002. doi: 10.1002/hbm.22986.

Lobier, M.A.; Peyrin, C.; Pichat, C.; Le Bas, J.F. y Valdois, S. (2014) Visual processing of multiple elements in the dyslexic brain: evidence for a superior parietal dysfunction. Frontiers in Human Neurosciencie, 8, 479. doi:10.3389/fnhum.2014.00479

Menghini, D.; Carlesimo, G. A.; Marotta, L.; Finzi, A.; Stefano Vicari, S. Developmental dyslexia and explicit long‐term memory (2010). Dyslexia, 16(3), https://doi.org/10.1002/dys.410

Mishkin, M.; Ungerleider, L. G. y Macko, K. (1983). Object vision and spatial vision_two cortical pathways. Trends In Neurosciences, 6, 414- 417.

Mitchell, A.S. ;Sherman, S. M.; Sommer, M.A.; Mair, R. G.; Vertes, R. P. y Chudasama, Y. (2014). Advances in Understanding Mechanisms of Thalamic Relays in Cognition and Behavior. Journal of Neuroscience, 34(46), 15340-15346. doi: https://doi.org/10.1523/JNEUROSCI.3289-14.2014

Müller-Axt, C.; Anwander,A. y von Kriegstein, K. (2017) Altered structural connectivity of the left visual thalamus in developmental dyslexia Current Biology. 27(23), 3692–3698. doi: 10.1016/j.cub.2017.10.034

Overath, T; McDermott, T. J; Zarate, J.M. y Poeppel, D. (2015) The cortical analysis of speech-specific temporal structure revealed by responses to sound quilts. Nature Neuroscience, 18, 903–911 doi:10.1038/nn.4021

Pennington, B.F. (2006) From single to multiple deficit models of developmental disorders. Cognition, 101, 2, 385-413 https://doi.org/10.1016/j.cognition.2006.04.008

Quercia, P., Feiss, L. y Michel, C. (2013). Developmental dyslexia and vision. Clinical Ophthalmology, 7, 869–881. http://doi.org/10.2147/OPTH.S41607

Quercia, P.; Seigneuric, A.; Chariot, S. ; P. Vernet, P ; Pozzo, T. ; Bron, A. ; C. Creuzot-Garcher, C. y Fobichon, F. (2005). Proprioception oculaire et dyslexie de développement. À propos de 60 observations cliniques. Journal Français D’Ophtalmologie, 28(7), 713-723

Riecke, L; Formisano, E; Sorger, B; Başkent, D y Gaudrain, E (2018) Neural Entrainment to Speech Modulates Speech Intelligibility Current Biology. 28(2):161-169. doi: 10.1016/j.cub.2017.11.033.

Rolls, E. T. (2004), Convergence of sensory systems in the orbitofrontal cortex in primates and brain design for emotion. Anatomical Record, 281A, 1212-1225. doi:10.1002/ar.a.20126

Smith-Spark, J. H.; Zięcik, A. P. y Sterling, C. (2017). Adults with developmental dyslexia show selective impairments in time-based and self-initiated prospective memory: Self-report and clinical evidence. Research in Developmental Disabilities, 62, 247-258. https://doi.org/10.1016/j.ridd.2016.12.011

Stein, J. (2018). What is Developmental Dyslexia? Brain Sciences, 8(2), 26; doi:10.3390/brainsci8020026

Stoeckel, C.; Gough PM; Watkins K.E. y Devlin J.T. (2009). Supramarginal gyrus involvement in visual word recognition Cortex, 45(9), 1091-1096. doi: 10.1016/j.cortex.2008.12.004.

Twomey, T.; Kawabata Duncan, K ; Price, C.J. y Devlina, J.T. (2011) Top-down modulation of ventral occipito-temporal responses during visual word recognition NeuroImage, (55)3, 1242-1251 https://doi.org/10.1016/j.neuroimage.2011.01.001

Vidyasagar, T.R y Pammer, K. (2010) Dyslexia: a deficit in visuo-spatial attention, not in phonological processing. Trends in Cognitive Sciences, 14 (2), 57-63 doi:10.1016/j.tics.2009.12.003

Warrier, C; Wong, P.; Penhune, V.; Zatorre, R.; Parrish, T.; Abrams, D y Kraus, N. (2009). Relating Structure to Function: Heschl’s Gyrus and Acoustic Processing. The Journal of Neuroscience, 29(1), 61-69. doi: 10.1523/JNEUROSCI.3489-08.2009

Weyand, T. (2015). The multifunctional lateral geniculate nucleus. Reviews in the Neurosciences, 27(2), 135-157. doi:10.1515/revneuro-2015-0018

Zacks, J. M., Speer, N. K., Swallow, K. M., Braver, T. S. y Reynolds, J. R. (2007). Event Perception: A Mind/Brain Perspective. Psychological Bulletin, 133(2), 273-293. http://doi.org/10.1037/0033-2909.133.2.273

How to Cite

Sánchez-Domenech, I. (2018). Reinterpreting Dyslexia. A differentiating proposal for an inclusive neurodidactics. Iberoamerican Journal of Education, 78(1), 127–147. https://doi.org/10.35362/rie7813226

Published

2018-11-15

Issue

Section

Monográfico. Neurodidáctica en el aula