Reinterpretando a Dislexia. Proposta diferenciada para uma neurodidática inclusiva

Autores

DOI:

https://doi.org/10.35362/rie7813226

Palavras-chave:

consciência fonológica, deficiência sensorial, dificuldades de leitura e escrita, Dislexia, transtorno neurológico

Resumo

Até o surgimento das técnicas de neuroimagem, as pesquisas sobre Dislexia consideravam o déficit fonológico como um dos fatores causais. Essas técnicas possibilitaram o avanço do conhecimento anatômico e funcional das diferentes áreas do cérebro, revelando a amplitude e a complexidade da rede de leitura do cérebro.

Com o objetivo de compreender melhor este transtorno do neurodesenvolvimento, analisam-se os últimos avanços nas funções neuroanatômicas das diferentes áreas do cérebro que envolvem a leitura e as pesquisas sobre a etiologia neurológica da Dislexia. Conclui-se que a necessidade de considerar um transtorno do neurodesenvolvimento sensorial localizado em áreas auditivas e visuais primárias acarreta um processamento deficiente da informação visual, espacial e temporal. A Dislexia é considerada e, portanto, também o déficit fonológico, uma consequência desse transtorno. Essa diferenciação permite visualizar outros sintomas menos abordados pela pesquisa e a didática.

Obtemos implicações cognitivas do déficit de processamento espaço-temporal nas etapas da educação infantil e do ensino fundamental diante de tarefas típicas de sala de aula para desenvolver uma didática inclusiva, compreensiva com a natureza neurológica do transtorno, que não penalize os alunos que sofrem este transtorno neurológico

Downloads

Não há dados estatísticos.

Referências

Ahveninen, J.; Iiro P. Jääskeläinen, I.P. ; Raij, T; Bonmassar, G.; Devore, S. ; Hämäläinen, M; Levänen, S.; Lin, F-H.; Sams, M.; Shinn-Cunningham, B. G.; Witzel, T. y Belliveau, J. W. (2006) Task-modulated “what” and “where” pathways in human auditory cortex. PNAS, 103(39), 14608-14613 https://doi.org/10.1073/pnas.0510480103

Banai, K.; Hornickel, J.; Skoe, E.; Nicol, T.; Zecker, S. y Kraus, N. (2009). Reading and subcortical auditory function. Cerebral Cortex, 19, 2699-2707 https://doi.org/10.1093/cercor/bhp024

Banai, K.; Nicol, T.; Zecker, S.G. y Kraus, N. (2005). Brainstem timing: implications for cortical processing and literacy. Journal of Neuroscience, 25(43), 9850-9857. doi: 10.1523/JNEUROSCI.2373-05.2005

Ben-Shachar, M., Dougherty, R. F., Deutsch, G. K., y Wandell, B. A. (2007). Contrast Responsivity in MT+ Correlates with Phonological Awareness and Reading Measures in Children. NeuroImage, 37(4), 1396–1406. http://doi.org/10.1016/j.neuroimage.2007.05.060

Bueti, D.; Bahrami, B. y Walsh, V. (2008). Sensory and associative cortex in time perception. Journal of Cognitive Neuroscience, 20, 1054-1062. doi:10.1162/jocn.2008.20060

Clark, K.A.; Helland, T; Specht, K.; Narr, K.L.; Manis, F. R.; Toga, A.W. y Hugdahl, K. (2014) Neuroanatomical precursors of dyslexia identified from pre-reading through to age 11, Brain, 137(12), 3136-3141, https://doi.org/10.1093/brain/awu229

Cutini, S.; Szűcs, D; Natasha Mead, N; Huss, M y Goswami, U. (2016). Atypical right hemisphere response to slow temporal modulations in children with developmental dyslexia. NeuroImage, 143, 40-49 http://dx.doi.org/10.1016/j.neuroimage.2016.08.012

de Freitas, P.B.; Pedão, S.T. y Barela, J.A. (2014) Visuomotor processing and hand force coordination in dyslexic children during a visually guided manipulation task. Research in Developmental Disabilities. 35(10):2352-2358. doi: 10.1016/j.ridd.2014.06.002..

Díaz, B., Hintz, F., Kiebel,S.J. y von Kriegstein, K.(2012). Dysfunction of the auditory thalamus in developmental dyslexia. PNAS, 109(34), 13841-13846. doi: 10.1073/pnas.1119828109.

Elliott, J.G. y Grigorenko, E.L. (2014). The Dyslexia Debate. Nueva York: Cambridge University Press.

Etchepareborda, M.C. (2002) Detección precoz de la Dislexia y enfoque terapéutico. Revista de Neurología, 34 (Supl1), 13-23. Recuperado: https://pdfs.semanticscholar.org/2812/bb248b85f9d7afe38996c79cb5e80ea610cc.pdf

Fischer, J. y Whitney, D. (2009) Precise Discrimination of Object Position in the Human Pulvinar. Human Brain Mapping, 30, 101–111, Doi: 10.1002/hbm.20485

Franceschini S, Gori S, Ruffino M, Pedrolli K, Facoetti A. (2012) A causal link between visual spatial attention and reading acquisition. Current Biology, 22(9), 814-819. doi: 10.1016/j.cub.2012.03.013.

Friederici, A. D. (2011) The brain basis of language processing: from structure to function. Physiological Reviews, 91, 1357–1392, doi:10.1152/physrev.00006.2011

Ghosh, S.; Basu, A.; Kumaran, S. S. y Khushu, S. (2010). Functional mapping of language networks in the normal brain using a word-association task. The Indian Journal of Radiology & Imaging, 20(3), 182–187. http://doi.org/10.4103/0971-3026.69352

Giraldo-Chica, M.; Hegarty, J.P. y Schneider, KA. (2015). Morphological differences in the lateral geniculate nucleus associated with dyslexia. Neuroimage Clin. (20)7, 830-836. doi: 10.1016/j.nicl.2015.03.011

Gori, S.; Seitz, A.R.; Ronconi, L.; Franceschini, S. y Facoetti, A. (2016). Multiple Causal Links Between Magnocellular-Dorsal Pathway Deficit and Developmental Dyslexia. Cerebral Cortex, 26, 4356-4369. https://doi.org/10.1093/cercor/bhv206

Grossberg, S. (1999) The link between brain learning, attention, and consciousness. Consciousness and Cognition,8(1), 1-44. https://doi.org/10.1006/ccog.1998.0372

Hornickel, J.; Skoe, E.; Nicol, T.; Zecker, S. y Kraus, N. (2009). Subcortical differentiation of stop consonants relates to reading and speech-in-noise perception. PNAS, 106, 13022-13027. doi: 10.1073/pnas.0901123106

Kozlovskiy, S.A.; Pyasik, M.M.; Korotkova, A.V.; Vartanov, A.V.; Glozman, J.M. y Kiselnikov, A.A. (2014). Selective involvement of lingual gyrus in working memory and perception of different types of visual stimuli. Journal of the International Neuropsychological Society, 20, (S2), 43–43

Kravitz, D. J.; Kadharbatcha, S. S.; Baker, C.I. y Mishkin, M. (2011) A new neural framework for visuospatial processing. Nat Rev Neurosci 12(4):217-230. doi: 10.1038/nrn3008

Kronschnabel J.; Brem S.; Maurer U. y Brandeis D. (2014) The level of audiovisual print-speech integration deficits in dyslexia Neuropsychologia, 62, 245-61. doi: 10.1016/j.neuropsychologia.2014.07.024

Lehongre, K.; Morillon B.; Giraud, A-L. y Ramus, F (2013). Impaired auditory sampling in dyslexia: further evidence from combined fMRI and EEG Frontiers in Human Neurosciencie. https://doi.org/10.3389/fnhum.2013.00454

Livingstone, M.S.; Rosen, G.D.; Drislane, F.W. y Galaburda, A.M. (1991). Physiological and anatomical evidence for a magnocellular defect in developmental dyslexia. PNAS, 88, 7943-7947.

Lizarazu, M.; Lallier, M.; Molinaro, N.; Bourguignon, M.; Paz-Alonso, P.M.; Lerma-Usabiaga, G y Carreiras, M. (2015). Developmental evaluation of atypical auditory sampling in dyslexia: Functional and structural evidence. Human Brain Mapp. 36(12), 4986-5002. doi: 10.1002/hbm.22986.

Lobier, M.A.; Peyrin, C.; Pichat, C.; Le Bas, J.F. y Valdois, S. (2014) Visual processing of multiple elements in the dyslexic brain: evidence for a superior parietal dysfunction. Frontiers in Human Neurosciencie, 8, 479. doi:10.3389/fnhum.2014.00479

Menghini, D.; Carlesimo, G. A.; Marotta, L.; Finzi, A.; Stefano Vicari, S. Developmental dyslexia and explicit long‐term memory (2010). Dyslexia, 16(3), https://doi.org/10.1002/dys.410

Mishkin, M.; Ungerleider, L. G. y Macko, K. (1983). Object vision and spatial vision_two cortical pathways. Trends In Neurosciences, 6, 414- 417.

Mitchell, A.S. ;Sherman, S. M.; Sommer, M.A.; Mair, R. G.; Vertes, R. P. y Chudasama, Y. (2014). Advances in Understanding Mechanisms of Thalamic Relays in Cognition and Behavior. Journal of Neuroscience, 34(46), 15340-15346. doi: https://doi.org/10.1523/JNEUROSCI.3289-14.2014

Müller-Axt, C.; Anwander,A. y von Kriegstein, K. (2017) Altered structural connectivity of the left visual thalamus in developmental dyslexia Current Biology. 27(23), 3692–3698. doi: 10.1016/j.cub.2017.10.034

Overath, T; McDermott, T. J; Zarate, J.M. y Poeppel, D. (2015) The cortical analysis of speech-specific temporal structure revealed by responses to sound quilts. Nature Neuroscience, 18, 903–911 doi:10.1038/nn.4021

Pennington, B.F. (2006) From single to multiple deficit models of developmental disorders. Cognition, 101, 2, 385-413 https://doi.org/10.1016/j.cognition.2006.04.008

Quercia, P., Feiss, L. y Michel, C. (2013). Developmental dyslexia and vision. Clinical Ophthalmology, 7, 869–881. http://doi.org/10.2147/OPTH.S41607

Quercia, P.; Seigneuric, A.; Chariot, S. ; P. Vernet, P ; Pozzo, T. ; Bron, A. ; C. Creuzot-Garcher, C. y Fobichon, F. (2005). Proprioception oculaire et dyslexie de développement. À propos de 60 observations cliniques. Journal Français D’Ophtalmologie, 28(7), 713-723

Riecke, L; Formisano, E; Sorger, B; Başkent, D y Gaudrain, E (2018) Neural Entrainment to Speech Modulates Speech Intelligibility Current Biology. 28(2):161-169. doi: 10.1016/j.cub.2017.11.033.

Rolls, E. T. (2004), Convergence of sensory systems in the orbitofrontal cortex in primates and brain design for emotion. Anatomical Record, 281A, 1212-1225. doi:10.1002/ar.a.20126

Smith-Spark, J. H.; Zięcik, A. P. y Sterling, C. (2017). Adults with developmental dyslexia show selective impairments in time-based and self-initiated prospective memory: Self-report and clinical evidence. Research in Developmental Disabilities, 62, 247-258. https://doi.org/10.1016/j.ridd.2016.12.011

Stein, J. (2018). What is Developmental Dyslexia? Brain Sciences, 8(2), 26; doi:10.3390/brainsci8020026

Stoeckel, C.; Gough PM; Watkins K.E. y Devlin J.T. (2009). Supramarginal gyrus involvement in visual word recognition Cortex, 45(9), 1091-1096. doi: 10.1016/j.cortex.2008.12.004.

Twomey, T.; Kawabata Duncan, K ; Price, C.J. y Devlina, J.T. (2011) Top-down modulation of ventral occipito-temporal responses during visual word recognition NeuroImage, (55)3, 1242-1251 https://doi.org/10.1016/j.neuroimage.2011.01.001

Vidyasagar, T.R y Pammer, K. (2010) Dyslexia: a deficit in visuo-spatial attention, not in phonological processing. Trends in Cognitive Sciences, 14 (2), 57-63 doi:10.1016/j.tics.2009.12.003

Warrier, C; Wong, P.; Penhune, V.; Zatorre, R.; Parrish, T.; Abrams, D y Kraus, N. (2009). Relating Structure to Function: Heschl’s Gyrus and Acoustic Processing. The Journal of Neuroscience, 29(1), 61-69. doi: 10.1523/JNEUROSCI.3489-08.2009

Weyand, T. (2015). The multifunctional lateral geniculate nucleus. Reviews in the Neurosciences, 27(2), 135-157. doi:10.1515/revneuro-2015-0018

Zacks, J. M., Speer, N. K., Swallow, K. M., Braver, T. S. y Reynolds, J. R. (2007). Event Perception: A Mind/Brain Perspective. Psychological Bulletin, 133(2), 273-293. http://doi.org/10.1037/0033-2909.133.2.273

Como Citar

Sánchez-Domenech, I. (2018). Reinterpretando a Dislexia. Proposta diferenciada para uma neurodidática inclusiva. Revista Ibero-Americana De Educação, 78(1), 127–147. https://doi.org/10.35362/rie7813226

Publicado

2018-11-15

Edição

Seção

Monográfico. Neurodidáctica en el aula