Learning Analytics for a typified vision of student learning. A case study

Authors

DOI:

https://doi.org/10.35362/rie8013444

Keywords:

records of uses, students, learning, gamifying, skills, learning analytics.

Abstract

The new methods of teaching and learning, based on virtual environments, which are an asynchronous extension of the classrooms, has determined that the teacher has had to assume new roles, some of which go through to increase their observation capacity and become an analyst of the learning process that the students follow, about the uses they make of digital platforms, how they interrelate with them and with others students, and how they acquire knowledge and develop skills and competences. From this point of view, the work deals with the description of statistical uses and registers, which, as a fingerprint, leave students in face-to-face courses in the virtual platforms, and which can define typologies and patterns differentiated learning, aspect that can lead to a reflection and reorientation of the future teaching-learning process. Specifically, the case study includes descriptive results of the interaction of students' use of digital resources with continuous assessment and grades in the course of Advanced Microeconomic Analysis, of the degree in Economics (GECO), at the UCM in the 2018-19 academic year, providing a profile of use that is still very traditional and polarized, linked to minimum lags in the timetable of the proposed activities by the teacher.

Downloads

Download data is not yet available.

References

Amo, D. y Santiago, R. (2017) Learning Analytics. La narración del aprendizaje a través de los datos. Barcelona: Editorial UOC.

Avila-Toscano, J. H., Hoyos, S. L., González, D. P., y Cabrales, A. (2011). Relación entre ansiedad ante los exámenes, tipos de pruebas y rendimiento académico en estudiantes universitarios. Psicogente, 14, 255–268.

Banihashem S. K., Aliabadi, K., Pourroostae, S., Delaver A, Nili Ahmadabadi, M. (2018). Learning Analytics: A Systematic Literature Review, Interdisciplinary Journal of Virtual Learning in Medical Science, 9(2). https://doi.org/10.5812/ijvlms.63024.

Bates, A.W. (T) (2015). Teaching in a Digital Age: Guidelines for designing teaching and learning for a digital age. University of British Columbia. Recuperado de https://bit.ly/2roovdc

Buckingham S., Ferguson, R. (2012). Social Learning Analytics. Educational Technology & Society, 15(3), 3–26. Recuperado de https://bit.ly/2Vja1NB.

Calzadilla, M. E. (2002). Aprendizaje colaborativo y tecnologías de la información y la comunicación. Revista Iberoamericana de Educación, 29(1), 1-10. Recuperado de https://bit.ly/2OmLjW1

Campbell, J. P. (2007). Utilizing Student Data within the Course Management System to Determine Undergraduate Student Academic Success: An Exploratory Study, PhD, Purdue University.

Cano, R. (2009). Tutoría universitaria y aprendizaje por competencias ¿Cómo lograrlo? Revista Electrónica Interuniversitaria de Formación del Profesorado, 12(1), 181-204. Recuperado de https://bit.ly/2YfvTHy

Díaz-Barriga, Á. (2011). Competencias en educación. Corrientes de pensamiento e implicaciones para el currículo y el trabajo en el aula. Revista Iberoamericana de Educación Superior, II(5), 3-24.

Ferrari, A. (2013) A Framework for Developing and Understanding Digital Competence in Europe. Institute for Prospective Technological Studies. Recuperado de https://bit.ly/23osQI7

Ferguson, R. (2012). Learning analytics: drivers, developments and challenges. International Journal of Technology Enhanced Learning, 4(5/6), 304–317.

Ferguson, R., Brasher A., Clow, D. y otros (2016). Research Evidence on the Use of Learning Analytics - Implications for Education Policy. R. Vuorikari, J. Castaño Muñoz (Eds.). Joint Research Centre Science for Policy Report; EUR 28294 EN; https://doi.org/10.2791/955210.

Ferguson, R. y Clow, D. (2017). Where is the evidence? A call to action for learning analytics. In: LAK ’17. Proceedings of the Seventh International Learning Analytics & Knowledge Conference, ACM International Conference Proceeding Series, pp. 56-65. New York, USA.

Florido, C., Jiménez, J. L., y Navarro, Y. (2019). Normas de permanencia y calendario de exámenes: ¿afectan al rendimiento académico universitario?, Cultura y Educación. https://doi.org/10.1080/11356405.2018.1564571

Garbanzo, G. M. (2007). Factores asociados al rendimiento académico en estudiantes universitarios, una reflexión desde la calidad de la educación superior pública. Revista Educación, 31(1), 43-63.

Guitert, M., Romeu, T. y Pérez, M. (2007). Competencias TIC y trabajo en equipo en entornos virtuales. RUSC. Universities and Knowledge Society Journal, 4(1). Recuperado de https://bit.ly/2H9OQFJ

Gutiérrez, A., Palacios, A. y Torrego, L. (2010). Tribus digitales en las aulas universitarias. Comunicar, 17(34), 173-181.

Harrison, C. y Killion, J. (2007). Ten roles for teachers leaders. Educational Leadership, 65(1), 74-77. Recuperado de https://bit.ly/2CbujQD

Herrero, R. (2014). El papel de las TIC en el aula universitaria para la formación en competencias del alumnado. Pixel-Bit. Revista de Medios y Educación, 45, 173-188. Recuperado de https://bit.ly/2vLp1oV

Ibarra, M. C., y Michalus, J. C. (2010). Análisis del rendimiento académico mediante un modelo logit. Ingeniería Industrial, 9(2), 47–56.

Iglesia, M. C. (2018). Aprendizaje Basado en un Proyecto Docente: Aprendizaje, creatividad, innovación y nuevos roles en la formación de profesorado en la era digital. Revista Complutense de Educación, 29(4), 1253-1278.

Iglesia, M. C. (2006). Varios retos y un único destino en la adaptación de los contenidos de la Teoría Económica al nuevo contexto de enseñanza aprendizaje. El campus virtual como herramienta de apoyo docente. Aplicaciones prácticas de la convergencia europea. Actas Jornadas nacionales de intercambio de experiencias piloto de implantación de metodologías ECTS.

Kaura, P., Singhb, M. y Josanc, G.S. (2015). Classification and prediction based data mining algorithms to predict slow learners in education sector. 3rd International Conference on Recent Trends in Computing (ICRTC-2015).

Leah P. M. y Dawson S., (2010). Mining LMS Data to Develop an ‘Early Warning System’ for Educators: A Proof of Concept, Computers & Education, 54(2), 588–599.

Lodge, J. M., y Corrin, L. (2017). What data and analytics can and do say about effective learning. Npj Science of Learning, 2(1).https://doi.org/10.1038/s41539-017-0006-5

Long, Ph. y Siemens, G. (2011). “Penetrating the Fog: Analytics in Learning and Education”. EDUCAUSE Review, 46(5), 30-40.

Lundberg,C. (2003). The influence oftime-limitations, faculty and peer relationships on adult student learning: A causal model. The Journal of Higher Education, 74, 665-688.

Martínez M. E., Arteaga B. y Pérez M. (2017). Description of an experience in university classroom teaching-learning: can the learning of statistics be improved through virtual forums? Conference: ICERI2017, 10th annual International Conference of Education, Research and Innovation. Recuperado de https://bit.ly/2VkUP36

Martín, M. A., Arranz, G., González, M. A., Páramo, R., Alarcia, E., Fernandoz, M. L., y González, M. L. (2003). Análisis del fracaso escolar y desarrollo de acciones de mejora. XI Congreso Universitario de Innovación Educativa en las Enseñanzas Técnicas, Barcelona.

Prensky, M. (2013). Enseñar a nativos digitales (1a. ed). México: SM Ediciones.

Romero, C., y Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert Systems with Applications, 33(1), 135-146.

Romero, C., Ventura S., y García, E. (2008). Data mining in course management systems: Moodle case study and tutorial. Computers and Education, 51(1), 368-384.

Sampson, D. (2017). Teaching and learning analytics to support teacher inquiry. In 2017 IEEE Global Engineering Education Conference (EDUCON 2017), Apr 25, 2017, Athens, Greece.

Stewart, C. (2017). Learning Analytics: Shifting from theory to practice. Journal on Empowering Teaching Excellence, 1(1), 95-105. https://doi.org/10.15142/T3G63W.

Siemens G. (2013). Learning Analytics: The Emergence of a Discipline, American Behavioral Scientist. Vol 57(10), p.1380-1400, SAGE Publications. Recuperado de https://bit.ly/2Puq7P8

Siemens, G. y Baker, R. S. J. (2012). Learning analytics and educational data mining: towards communication and collaboration. In Proceedings of the 2nd International Conference on Learning Analytics and Knowledge (LAK ‘12), Buckingham, Gasevic, and Ferguson (Eds.). ACM, New York, NY, USA, 252-254. https://doi.org/10.1145/2330601.2330661

Siemens, G., Dawson S., y Lynch G. (2013). Improving the Quality of Productivity of the Higher Education Sector: Policy and Strategy for Systems-Level Deployment of Learning Analytics, SoLAR. Recuperadode http://bit.ly/1KNZ9HH

Tejedor, F., y García-Valcárcel, A. (2007). Causas del bajo rendimiento del estudiante universitario (en opinión de los profesores y alumnos). Propuestas de mejora en el marco de EEES. Revista de Educación, 342, 443–473.

Vela-Pérez, M., Hernández-Estrada, A., Tirado-Domínguez, G. y otros (2017). Learning Analytics to classify students according to their activity in moodle. EDULEARN17 Proceedings, pp. 1166-1172. Barcelona.

Viñals, A. y Cuenca, J. (2016). El rol del docente en la era digital. Revista Interuniversitaria de Formación del Profesorado, 86(30.2), 103-114. Recuperado de https://bit.ly/2rq7wKK

How to Cite

de la Iglesia Villasol, M. C. (2019). Learning Analytics for a typified vision of student learning. A case study. Iberoamerican Journal of Education, 80(1), 55–87. https://doi.org/10.35362/rie8013444

Published

2019-05-14